Quantification of continuous flood hazard using random forest classification and flood insurance claims at large spatial scales: a pilot study in southeast Texas

نویسندگان

چکیده

Abstract. Pre-disaster planning and mitigation necessitate detailed spatial information about flood hazards their associated risks. In the US, Federal Emergency Management Agency (FEMA) Special Flood Hazard Area (SFHA) provides important areas subject to flooding during 1 % riverine or coastal event. The binary nature of hazard maps obscures distribution property risk inside SFHA residual outside SFHA, which can undermine efforts. Machine learning techniques provide an alternative approach estimating across large scales at low computational expense. This study presents a pilot for Texas Gulf Coast region using random forest classification predict probability 30 523 km2 area. Using record National Insurance Program (NFIP) claims dating back 1976 high-resolution geospatial data, we generate continuous map 12 US Geological Survey (USGS) eight-digit hydrologic unit code (HUC) watersheds. Results indicate that model predicts with high sensitivity (area under curve, AUC: 0.895), especially compared existing FEMA regulatory floodplain. Our identifies 649 000 structures least annual chance flooding, roughly 3 times more than are currently identified by as flood-prone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flood hazard risk assessment model based on random forest

http://dx.doi.org/10.1016/j.jhydrol.2015.06.008 0022-1694/ 2015 Elsevier B.V. All rights reserved. ⇑ Corresponding author at: Department of Water Resource and Environment, Geography and Planning School of Sun Yat-Sen University, Guangzhou 510275, China. Tel.: +86 013763316315. E-mail address: [email protected] (C. Lai). Zhaoli Wang , Chengguang Lai a,b,c,⇑, Xiaohong Chen , Bing Yang , S...

متن کامل

data mining rules and classification methods in insurance: the case of collision insurance

assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...

15 صفحه اول

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Spatial Analysis of Flood Hazard in Nirchay River Basin Using HEC-HMS Model and and fuzzy logic

Floods are one of the most abundant and destructive natural disasters that every year are caused heavy losses of life and property. Due to human activity in river systems and construction in rivers, flood damage has an upward trend. One of the most important actions to reduce flood damage is the provision of flood hazard zoning maps and their use in spatial planning. In this study, the risk of ...

متن کامل

Flood Hazard Assessment Using Panchromatic Satellite Imagery

Panchromatic (PAN) satellite imagery has been used successfully in different applications such as topographic mapping and terrain modelling. Nevertheless, PAN imagery is still one of the less used digital sources for land-change studies except few processes where the high-resolution of the PAN images is used to improve the visualization quality of the multi-spectral images. This research aimed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Natural Hazards and Earth System Sciences

سال: 2021

ISSN: ['1561-8633', '1684-9981']

DOI: https://doi.org/10.5194/nhess-21-807-2021